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A comprehensive comparison between the Hertz–Mindlin model and the linear spring model in true
triaxial shear simulations of granular soils was conducted using the discrete-element method (DEM).
The no-slip Hertz–Mindlin model for general elastic non-spherical particles with smooth surfaces was
revisited and implemented for superellipsoidal particles in an in-house DEM code. Three groups of
specimens with a grain size distribution of Ottawa 20–30 sands, consisting of spheres, ellipsoids and
superellipsoids, respectively, were subjected to triaxial shear DEM simulations with the Hertz–Mindlin
model and the linear spring model. The corresponding mechanical behaviours were examined in terms
of a series of macro- and micro-parameters. It was found that the linear spring model was able to
resemble the Hertz–Mindlin model in aspects of both microscopic and macroscopic mechanical
behaviours of granular media with spherical and/or non-spherical particles. This finding suggests that
the linear spring model can be used to investigate micro-mechanical behaviours of granular soils, even
with complex particle shapes.
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INTRODUCTION
Granular soils, composed of discrete solid particles interact-
ing with one another, have complex physical and mechanical
behaviours (Herrmann et al., 2013). It is well known that
continuum constitutive models of macroscopic behaviour
cannot fully describe the mechanical behaviours of granular
soils owing to their internally discontinuous nature.
Therefore, it is meaningful to develop an understanding of
the strength and deformation mechanisms of granular soils
from a particle-scale (often referred to as microscopic) point
of view. Accordingly, there has been a growing interest in
numerical investigations in geomechanics using the
discrete-element method (DEM, Cundall & Strack (1979))
to simulate, for example, conventional direct shear tests and
triaxial compression tests (Cui & O’Sullivan, 2006; Cui et al.,
2007). The interested reader is referred to O’Sullivan (2011)
for a good review of the application of the DEM in
geomechanics.
Although the DEM is a powerful numerical tool for

particulate investigations in geomechanics, DEM models in
practice are usually considerably simplified in aspects of
particle shape and the inter-particle contact model.
Specifically, soil particles are modelled using idealised
spheres instead of complex shapes, and a simple linear
spring (LS) model is adopted instead of a more complicated
non-linear model (typically the Hertz–Mindlin (HM) model
(Johnson, 1985)) – for example, Zhao & Evans (2011), Zhao
& Guo (2013), Zhao et al. (2017a). Both simplifications
contribute to speeding up simulations (O’Sullivan, 2011),

but inevitably there is some loss in modelling accuracy. In
particular, the significance of particle shape on the mechan-
ical behaviours of granular soils has been reported in many
experimental investigations – for example, by Cho et al.
(2006) and Shin & Santamarina (2012). To indirectly
consider the effect of particle shape in simulations of
spheres, rolling resistance (Iwashita & Oda, 1998; Jiang
et al., 2015) is sometimes artificially introduced in the
contact model to obtain comparable macroscopic behaviours
of granular soils. Such a workaround can definitely reduce
computational cost; however, the internal fabric of granular
soils is less realistic (Zhou et al., 2013). Indeed, the effect of
particle shape on the granular fabric is significant (Zhao
et al., 2017b).
In the DEM, particles are assumed to be perfectly rigid

without deformation, but allowed to overlap (i.e. the
so-called ‘soft-contact’ approach). As a consequence,
contact force can be calculated from the overlap in terms of
a given contact model. Generally, the normal and shear
contact forces Fn and Fs are calculated using a force–
displacement law (Cundall & Strack, 1979; Potyondy &
Cundall, 2004) given as

Fn ¼ Knδ ð1aÞ

Fs ¼ F ′s � ksΔu ð1bÞ
where Kn is the contact normal-secant stiffness; ks is the
contact shear-tangent stiffness; δ is the contact penetration
depth; Δu is the incremental shear displacement during the
current time step; and F ′s is the shear contact force at the
previous time step. Note here that Kn = 2kn/3 for the HM
model, whereas Kn = kn for the LS model, where kn is the
contact normal-tangent stiffness. Theoretically, the contact
stiffnesses kn and ks are related to the material properties,
contact geometric deformation and loading history. The HM
model describes a more realistic contact behaviour than the
LS model (Johnson, 1985).
With respect to the LS model, particle contact stiffnesses

kn and ks are arbitrarily specified without a universal
criterion, even for spherical particles. For example,
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Potyondy & Cundall (2004) established a bonded-particle
model in which the particle normal stiffness kn correlates
with the particle radius R and the Young’s modulus Ec of the
particle as kn = 4REc. For simplicity, the normal and
tangential contact stiffnesses are set directly – for example,
kn/r= ks/r=100 MPa (where r is the equivalent radius of two
contacting particles) (Zhao & Guo, 2013). At other times,
researchers have assigned the values of normal and tangen-
tial stiffness without a detailed explanation. With respect to
the HM contact model, the ratio of tangential to normal
stiffness ks/kn lies in [2/3, 1] (Goldenberg & Goldhirsch,
2005).

Researchers have proposed a variety of particle shapes for
DEM simulations – for example, Lin & Ng (1997), Cleary
(2008) and Eliáš (2014). A simple and direct solution is the
so-called clump technique by which a complex particle shape
is approximately constructed using spheres – for example,
Garcia et al. (2009). However, this technique might produce
some unrealistic multi-contacts in some cases (Höhner et al.,
2012). Moreover, the contact profile is always circular,
independent of particle shape. In contrast, analytical geo-
metric shapes are preferable to implement the HM model.
However, the HM model is not applicable for some special
cases – for example, polyhedral particles (Eliáš, 2014). The
HMmodel involves computation of the principal curvatures,
referred to as the curvature-related DEM contact model,
which makes the computation more intensive. Thus, many
researchers are likely to use the LS model – for example,
Cleary (2008), Delaney & Cleary (2010), Langston et al.
(2015) and Majidi et al. (2015).

A few studies on the comparison of the LS and HM
models have been reported so far. For example, Di Renzo &
Di Maio (2004) compared the LS and HM models for the
simulation of particle collisions. Thornton et al. (2013)
analysed the effect of the LS and HMmodels on the rebound
characteristics in simulating the inelastic oblique impact of a
sphere against a wall. Non-spherical particles have been
investigated even less. A preliminary investigation shows
that specimens using the LS model and the HM model
share qualitatively similar macro-mechanical behaviours
(Wellmann et al., 2008). However, it is still an open issue to
answer whether using the LS model is capable of yielding
similar results as using the HM model when investigating
macro- and micro-mechanical behaviours of granular soils
considering the particle shape effect. This idea is explored
further herein.

SIMULATION SET-UP
DEM contact models

Hertz–Mindlin is a well-known model in contact mech-
anics. An overview may be found in many textbooks – for
example, Johnson (1985) and Santamarina et al. (2001).
Referring to the derivation in Appendix 1, the contact
normal-tangent stiffness kn is given as

kn ¼ 2π
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E′

K ′3ðAþ BÞ

s
G*δ1=2 ð2Þ

where the symbols are introduced in Appendix 1, and the
contact normal-secant stiffness, Kn = 2kn/3.

With Mindlin’s no-slip solutions, for simplicity, it is
assumed that the tangential force is parallel to the tangential
displacement, and ks = (kx+ ky)/2 where kx and ky are
principal shear tangent stiffnesses given later by equations (23)
and (24). A similar simplification has been employed by
other researchers – for example, Lin & Ng (1997) and

Wellmann et al. (2008). It can be verified that kx/ky (kx� ky)
lies in [1, 2] for practical Poisson ratios ν� 0·5.
For two spheres in contact, with radii of R1 and R2, the

contact profile degenerates to a circle. Therefore, kn and ks
are simplified as

kn ¼ 4
μ1 � μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2δ

R1 þ R2

r
ð3Þ

ks ¼ 8
2μ1 � μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2δ
R1 þ R2

r
ð4Þ

Equations (3) and (4) after substituting μ1 and μ2 are in
agreement with those of Cundall’s derivation (Cundall, 1988)
applied in the commercial software, PFC3D. Considering two
contacting bodies of the same material properties, the ratio of
ks to kn is equal to 2(1� ν)/(2� ν), which lies in [2/3, 1] for
practical Poisson ratios, ν� 0·5.
For the LS model, both normal and tangential contact

stiffnesses are constant and set directly in simulations.

Superellipsoid-based DEM
Superellipsoids are able to capture the main geometric

features of particles in nature (Williams & Pentland, 1992),
and are employed to consider the effect of particle shape.
A typical five-parameter surface function of a superellipsoid
in the local Cartesian coordinates is given as (Barr, 1981)

x
rx

����
����
2=ε1

þ y
ry

����
����
2=ε2

 !ε1=ε2

þ z
rz

����
����
2=ε2

¼ 1 ð5Þ

where rx, ry and rz are referred to as the semi-major axis
lengths in the directions of the x, y and z axes, respectively,
and εi (i=1, 2) are the shape parameters determining the
sharpness of the particle edges. In this work, a special case
is taken where rz= ηrx= ηry and ε= ε1 = ε2 for simplicity,
but it is noted that there is still a broad range of particle
shapes available. Fig. 1 shows variation of particle shape with
η and ε.
Given that the principal curvatures of a superellipsoid can

be readily obtained (see Appendix 4), it is possible to install
the HM model at the contact of two contacting super-
ellipsoids. An in-house superellipsoid-based DEM code,
SudoDEM (Zhao & Zhou, 2017; Zhao et al., 2017b) is
applied in this work, where the HM and LS models are
implemented. Moreover, inter-particle sliding is modelled
with a slip model where the tangential contact force complies
with Coulomb’s friction law.

2·5

1·0

0·3

η

0·5 0·67 1·0 1·2 1·4 ε

Fig. 1. Particle shapes varying with η and ε
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Specimen preparation
Three groups of cubical specimens, denoted as Gi

(i=1, 2, 3), are considered with different particle shapes,
which share the same grain size distribution (GSD) similar to
Ottawa 20–30 sands (see Fig. 2). The diameter of the sphere
with the same volume of a non-spherical particle is taken as
the particle’s equivalent diameter. The geometric properties
of particles within the three groups are summarised in
Table 1. Each group consists of three specimens prepared
using the HM and LS models, denoted as Gi-HM, Gi-LS1
and Gi-LS2, respectively.
Specimens of each group are prepared with the following

protocol. (a) Approximately 5000 particles with random
positions and orientations are generated with an initial void
ratio of 0·6 in a cubical container with six frictionless rigid
walls, where the induced particle overlap is not considered;
the system is allowed to cycle to equilibrium as excess kinetic
energy is dissipated. Energy is dissipated by periodically
setting the velocities of all particles to zero while the
container walls remain fixed. (b) The assembly is subjected
to isotropic compression with a stress of 100 kPa using
the LS model. (c) The LS model in (b) is replaced by the
HM model, yielding specimen Gi-HM after consolidation.
(d ) With the configuration data from specimen Gi-HM,
specimens Gi-LS1 and Gi-LS2 are prepared using the LS
model after consolidation. In this manner, the initial fabric of
all assemblies is as consistent as possible. The consolidation
procedure is implemented by way of a numerical stress-
controlled servo algorithm (Zhao et al., 2015) to maintain a
constant stress, σ0, of 100 kPa on each specimen.
The material properties of particles in the DEM simu-

lations are listed in Table 2. The local damping coefficient is
set to 0·3. Density scaling is employed to reduce the
computational cost associated with DEM simulations for
quasi-static analyses, where the velocities and accelerations
will be affected while contact forces and displacements are
not sensitive to the density value used – for example,
Thornton (2000) and Cui & O’Sullivan (2006). For the
HM model in specimens Gi-HM, the elastic properties are
from quartz particles (Santamarina et al., 2001). For the LS

model in specimens Gi-LS1 and Gi-LS2, it is assumed that
the tangential contact stiffness is equal to the normal contact
stiffness. In detail, in specimens Gi-LS1 kn/r0 = ks/r0 = 1 GPa
(r0 is the average radius of particles), where kn is equal to
about the average of normal-secant stiffness within the
consolidated specimens Gi-HM, whereas for comparison
kn/r0 = ks/r0 = 100 MPa is used in specimens Gi-LS2, as
assumed in the literature (Zhao & Guo, 2013). The
inter-particle coefficient of friction μp is significantly depen-
dent on the surface roughness. For example, Senetakis et al.
(2013) reported μp varying between 0·093 and 0·231 for
quartz particles, whereas Nardelli et al. (2017) reported μp
ranging between 0·249 and 0·372. Here the μp of 0·3 is
applied in the simulations. Moreover, the LS model with
Kn = 106 N/m is installed at wall–particle contacts for all
simulations to obtain comparable results. Nine specimens are
prepared using the above procedure. Their basic character-
istics are listed in Table 3.

Triaxial compression tests
All prepared specimens are subjected to triaxial com-

pression tests after consolidation. During triaxial com-
pression, the top and bottom walls move towards each
other at a constant loading strain rate of 0·01/s, which is
sufficiently small to maintain quasistatic conditions with an
inertial number of 6� 10�4, 10�3 (Zhao & Zhou, 2017),
whereas the other four side walls move individually to
maintain a constant confining stress σ0 of 100 kPa with the
stress-control servo, as mentioned above. Compression stops
at an axial strain of 40%. In the authors’ experience, such an
axial strain is sufficiently large to reach a critical state. More
details about the triaxial compression procedure are pre-
sented in Zhao & Zhou (2017). Figs 3(a) and 3(b) show
snapshots of specimens Gi-HM before and after shearing,
respectively; the other specimens are not shown because of
the similar configurations of specimens Gi-HM.

RESULTS AND DISCUSSION
Macroscopic strength and deformation
The macroscopic mechanical response of a granular

material during shearing can be quantified by the stress
d10 = 0·656 mm

d60 = 0·737 mm

d50 = 0·725 mm
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Fig. 2. Grain size distribution similar to Ottawa 20–30 sands

Table 1. Geometric properties of particles in the DEM specimens

Group Particle shape η ε

G1 Sphere 1·0 1·0
G2 Ellipsoid 1·0�1·5 1·0
G3 Superellipsoid 1·0�1·5 0·5�1·4

Table 2. Material properties of particles in the DEM simulations

Properties Gi-HM Gi-LS1 Gi-LS2

Density: 106 kg/m3 2650 2650 2650
Shear modulus, G: GPa 29 — —
Poisson ratio, ν 0·31 — —
Normal stiffness, Kn: N/m — 3� 105 3� 104

Tangential stiffness, ks: N/m — 3� 105 3� 104

Particle coefficient of friction 0·3 0·3 0·3

Table 3. Characteristics of specimens after consolidation

Specimen Void ratio Coordination number

G1-HM 0·644 5·186
G1-LS1 0·643 5·573
G1-LS2 0·633 5·867
G2-HM 0·597 5·322
G2-LS1 0·596 5·476
G2-LS2 0·583 6·163
G3-HM 0·488 5·858
G3-LS1 0·488 6·192
G3-LS2 0·481 6·931
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tensor that is calculated from discrete measurements with
the following definition proposed by (Christoffersen et al.,
1981)

σij ¼ 1
V

X
c[V

f ci l
c
j ð6Þ

where V is the total volume of the assembly; f c is the contact
force at the contact c; and l c is the branch vector joining the
centres of the two contacting particles at contact c. The mean
stress p and the deviatoric stress q are defined as

p ¼ 1
3
σii ð7aÞ

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2
σ′ijσ′ij

r
ð7bÞ

where σ′ij is the deviatoric part of stress tensor σij.
Given that the cubical specimens are confined by rigid

walls, the axial strain εz and the volumetric strain εv can be
approximately calculated from the positions of the boundary
walls, that is

ez ¼
ðH
H0

dh
h

¼ � ln
H0

H
ð8aÞ

ev ¼ ex þ ey þ ez ¼
ðV
V0

dv
v
¼ � ln

V0

V
ð8bÞ

where H and V are the height and volume of the specimen
during shearing, respectively, and H0 and V0 are their initial
values before shear. Positive values of volumetric strain
represent dilatancy.

Figures 4(a)–4(c) show evolution of the deviatoric stress
ratio q/p and volumetric strain εv for all three groups of
specimens during shearing. It is evident that each specimen
exhibits a peak stress followed by softening with a corre-
sponding volumetric dilatation, which is similar to observed
behaviours of dense sands in the laboratory. Moreover, both
the deviatoric stress ratio and the volumetric strain approach
steady values when reaching an axial strain of 30%. It is
reasonable to say that all specimens reach critical states at an
axial strain of 40%.
With respect to the effects of contact models, it can be

seen that the responses of specimens Gi-LS1 are consistent
with those of specimens Gi-HM, regardless of particle
shape. In other words, using the LS model is able to yield
similar macroscopic responses of granular soils as using the
HM model. Moreover, specimens Gi-LS2 show a similar
stress–strain curve as specimens Gi-HM and Gi-LS1, even
though the contact stiffness in specimens Gi-LS2 is one order
of magnitude less than that in specimens Gi-LS1 and
specimens Gi-LS2 are slightly denser than the other
counterpart specimens. This indicates that contact stiffness
has a negligibly small effect on the shear strength of a
granular material, as reported in the literature (Ng, 2006),
where this feature is attributed to similar initial fabric.
However, as shown in Fig. 5, contact stiffness has a
considerable effect on the small-strain behaviours of a
granular material, which has also been reported in the
literature – for example, Yimsiri & Soga (2000). Note that the
contact stiffness of interest varies within the range of one
order of magnitude less than the benchmark. In contrast, a
significant discrepancy in volumetric strains between speci-
mens Gi-LS2 and Gi-LS1 is observed, implying that contact
stiffness has a considerable effect on deformation of granular
materials. Interestingly, it appears that particle shape has a

(a)

(b)

G1-HM G2-HM G3-HM

Fig. 3. Configurations of specimens Gi-HM at (a) the initial and (b) the final states
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considerably different effect on the deformation mechanism
of specimens with softer contacts, where specimens Gi-LS2
are less dilative than specimens Gi-LS1 for non-spherical
particles, whereas the contrary case is found for spherical
particles.
With the procedure for specimen preparation discussed

previously, the initial fabric of specimens in each group is
controlled about the same, which is verified by similar void
ratios and local void ratio distributions, as shown in the
subsequent analysis. The following sections provide a
comprehensive analysis of the initial fabric of each group
of specimens. A series of microscopic parameters is employed
to compare the effect of the HM and LS models.

Unsheared and sheared states
Contact stiffness distributions. Understanding the contact
stiffness distributions within specimens Gi-HM can provide a
guide for selecting reasonable values of contact stiffness in
the LS model. Here the focus is placed on the normal-secant
stiffness Kn and shear-tangential stiffness ks. The probability
distributions of Kn and ks are shown in Figs 6(a)–6(c) and
6(d)–6(f), respectively, for the three specimens with different
particle shapes, where Gaussian fitting f (x, μ, σ) =
1/[(2π)0·5σ] exp[�(x� μ)2/(2σ2)] andWeibull fitting f(x, λ, k) =
k/λ(x/λ)(k�1) exp[�(x/λ)k] are performed. It can be seen that
Kn shares a probability distribution similar to ks, whereas
the distribution of ks is wider and shorter (i.e. with larger μ
and σ). It is worth noting that the distribution of contact
stiffness within specimen G3-HM can be better fitted by
a Weibull distribution, which is slightly different from the
other two specimens. The authors note here that such a
difference is associated with complexity of particle shape.
Quantitatively, the mean of ks is slightly larger than the mean
of Kn with a ratio of approximate 1·2, where both means
approximately lie between 3�4� 105 N/m (�r0� 1 GPa)
regardless of particle shape effect. Yimsiri & Soga (2000)
pointed out that a small discrepancy betweenKn and ks in the
LS model would not significantly affect the mechanical
behaviours of a granular material. Therefore, that tangential
contact stiffness is set equal to normal contact stiffness in the
LS model is reasonable to some degree. Moreover, given that
the contact stiffness in the HM model is penetration-
dependent, it is not surprising to see that the probability
distribution of contact stiffness moves right and becomes
wider after shearing. The corresponding mean does not
exceed 6� 105 N/m for all specimens. Also, the shifted
distributions have similar characteristics for all specimens.
That is to say, the probability distribution of contact stiffness
is strongly sensitive to the stress state, but not to particle
shape.
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Fig. 4. Variation of deviatoric stress ratio q/p and volumetric strain
εv with axial strain for all specimens during shearing: (a) G1;
(b) G2; (c) G3
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Local void ratio distributions. The void space distribution is
related to deformation behaviour, stress state and conduction
phenomena within granular media (Jowitt & Munro, 1975;
Kang et al., 2014). To date, several schemes have been
employed to quantify void space within a granular material –
for example, Oda (1977) and Kang et al. (2014). Herein, a
typical approach is adopted – namely, the Voronoi tessella-
tion – to weigh local voids to each individual particle, where
an individual particle is enclosed by a Voronoi cell. This
method has been widely applied to sphere packings – for
example, Evans & Brown (2014), Yi et al. (2015) and Zhao
et al. (2017a) – but to just a few non-spherical particles
(Luchnikov et al., 1999; Baule et al., 2013; Schaller et al.,
2015) owing to the complication of construction of Voronoi
cells. A recently developed technique, set Voronoi tessellation
(Schaller et al., 2013), is used for Voronoi cell construction
for superellipsoidal particles in this work.

For each Voronoi cell and/or each particle i, local void
ratio ei is defined as the ratio of the void volume Vvi to the
particle volume Vsi. Following the literature (Kuo & Frost,
1996; Evans & Frost, 2010), by weighting the local void ratios
by their respective solid volumes, the solid volume weighted
mean of the local void ratios ems is

ems ¼
PNp

i¼1 Vsi eiPNp

i¼1 Vsi

¼ Vv

Vs
ð9Þ

where Np is the total number of Voronoi cells. The mean of
the solid volume weighted local void ratios is equal to the
global void ratio by the given definition.

Figures 7(a)–7(c) and 7(d)–7(f) show solid volume
weighted distributions for all specimens before and after

shearing, respectively, where the dashed lines are best fits
with a lognormal distribution f (x, m, s) = 1/[(2π)0·5sx] exp
{�[ln(x) +m]2/(2s2)}. Other forms of distribution functions
have also been found to fit histograms of local void space in
the literature – for example, gamma (Evans & Frost, 2010)
and K-gamma (Guo & Zhao, 2014). It can be seen that the
distribution of local void ratios becomes wider with an
increasing mean after shearing, consistent with the corre-
sponding dilatation. It is evident that specimens Gi-LS1
have about the same local void distributions as specimens
Gi-HM before shearing, indicating that the initial fabric of
specimens Gi-LS1 and Gi-HM is almost the same. However,
a small discrepancy of local void distributions between
specimens Gi-LS2 and the others is observed, which is
attributed to their lower contact stiffness. With respect to
the sheared states, all distributions in each group are
different, but not significant, indicating that while various
contact models predict similar initial fabric, shearing
elucidates the difference in microstructure for different
contact models.

Probability distribution functions of contact forces. The
probability distribution function (PDF) of contact forces is
an important and common quantity to investigate the
contact force network (Majmudar & Behringer, 2005). The
PDFs of normal contact forces fn normalised by the mean
normal contact force hfni at the initial and final states are
shown in Figs 8(a)–8(c) and 8(d)–8(f), respectively. It can be
seen that there is a significant shear-induced variation in
the PDF (Majmudar & Behringer, 2005), indicating that the
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PDF is history dependent, as reported in other literature – for
example, Zhao & Zhou (2017). Furthermore, as generally
observed in granular packings (Zhao et al., 2017a, 2017b),
the proportion of contacts with forces above the mean hfni
decreases exponentially, whereas the proportion of contacts
with forces below the mean follows a power law

PDFð fnÞ/
eα1ð fn=hfniÞ fn . hfni

fn
hfni
� �β1

fn , hfni

8<
: ð10Þ

where α1 and β1 are fitting parameters. It is worth pointing
out that the mean normal contact force hfni might not be the
watershed for the best fitting.
For specimens in each group, it can be seen that the contact

model has a significant effect on the PDF ( fn/hfni) at the
initial state, but not at the final state. This feature is
independent of particle shape. Particularly at the initial
state, the PDF ( fn/hfni) for specimens Gi-LS1 is consistent
with that for specimens Gi-HM at the greatest range of fn,
indicating that the LS model is able to yield similar
mechanical behaviours as the HM model at the contact
scale. However, an obvious discrepancy is observed at the
left tail – that is, fn, 0·1 hfni. This is because the LS model
with a constant stiffness overestimates the contact
stiffness when using the HM model for small normal
contact forces (or small penetrations). That is also why a
lower probability is seen for small normal contact forces.
With respect to specimens Gi-LS2, most of the normal
contact forces stay within a small range between 0·5 hfni
and 2·0 hfni.

Evolution of microscopic parameters
Mean normal contact force and mean coordination number.
Previous studies have shown that normal contact forces
within granular materials have a major contribution to
undertaking the external loading (Radjaï et al., 1998; Zhao
& Zhou, 2017). The mean normal contact force hfni is
defined as the average of normal contact force magnitudes
over all contacts. Evolution of hfni for all three groups of
specimens during shearing is plotted against axial strain in
Figs 9(a)–(9(c)). It is not surprising that hfni behaves similarly
to the deviatoric stress ratio, owing to its major contribution
to the shear strength. Moreover, hfni is around 0·05 N at the
initial states for all specimens, regardless of particle shape.
During shearing, the mean normal contact forces in
specimens G1-LS1 and G2-LS1 are well in line with that in
specimen G1-HM and specimen G2-HM, repectively.
However, hfni in specimen G3-LS1 is considerably smaller
than that in specimen G3-HM, implying a non-negligible
effect of particle shape on hfni to some extent.
The mean coordination number, Z, defined as the mean

number of neighbours touching each individual particle, is an
important parameter for quantifying the internal fabric of a
granular assembly. As shown in Figs 9(a)–9(c), the mean
coordination number shows a quick drop with axial strain
before approaching a steady value, which can be regarded as
a critical value. A similar trend was described by a theoretical
relationship associated with granular plastic deformation in
two-dimensional discrete-element simulations (Rothenburg
& Kruyt, 2004). Moreover, it can be seen that specimens
Gi-LS1 and Gi-HM share about the same evolution of Z,
even though some fluctuation is observed in specimens
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Gi-HM, especially in specimen G3-HM, where the fluctu-
ation might be attributed to instability caused by diverse
particle shapes. Furthermore, specimens Gi-LS2 have much
larger mean coordination numbers due to their low contact
stiffness, which corresponds to smaller mean normal contact
forces.

Proportions of sliding and weak contacts. It is well known
that force transmission within granular materials is by way of
inter-particle contacts. On one hand, contacts are mobilised
to different degrees under loading, where a contact is
completely mobilised when the tangential contact force
reaches the maximum frictional force – that is, sliding
contact. On the other hand, contacts carry large or small
forces – that is, strong or weak contacts – connecting as
strong or weak contact force networks to equilibrate the
external loading. Strong contacts carry the whole deviatoric
load while almost the whole friction dissipation occurs at
weak contacts (Radjaï et al., 1998; Estrada et al., 2008). For
simplicity, contacts carrying normal contact forces less than
the mean hfni are denoted as weak contacts, while the others
are denoted as strong contacts. It is worth pointing out that
such a classification using hfni is rough and arbitrary because
hfni does not correspond to a transition in the partial network
(i.e. ‘ξ-network’ (Radjaï et al., 1998)) owing to the effect of
particle shape (Zhao & Zhou, 2017). However, it is fine to use
hfni to roughly separate the strong and weak contacts for the
comparison presented in the following.

Sliding contact proportion ζs and weak contact proportion
ζw for all three groups of specimens were monitored during

shearing as shown in Figs 10(a)–10(c). It can be seen that
both ζs and ζw have a quick initial increase, then slightly
decrease to a relatively steady value. Similar evolution of ζs
and ζw has been reported previously (Guo & Zhao, 2013;
Zhao & Zhou, 2017). Moreover, ζs in specimens Gi-LS1
quantitatively agrees with that in specimens Gi-HM, whereas
ζs in specimens Gi-LS2 is lower than that in specimens
Gi-LS1 and Gi-HM. In particular, it appears that the
discrepancy between specimens Gi-LS2 and the others is
related to particle shape to some degree. With respect to ζw,
specimens Gi-LS1 and Gi-HM share about the same
evolution of ζw as expected. Moreover, it is evident that
contact stiffness has only a small effect on the critical value of
ζw, which is around 60�65% regardless of particle shape.

Anisotropy. Anisotropy is a well-known characteristic of
granular materials, which attracts growing attention in the
field of geomechanics. Here the focus is placed on three
typical vectorial measures, namely, contact normal (orien-
tation), branch vector and contact force, to quantify granular
fabric. A contact normal is defined as the unit normal vector
of the particle surface at contact, and a branch vector is
defined as the vector connecting the centroids of two adjacent
particles. Following the literature (Satake, 1982; Zhao et al.,
2017b), a rank-2 fabric tensorΦij of each vectorial measure n
is introduced by equation (11) with the corresponding
quantification of anisotropy given in equation (12).

ΦijðnÞ ¼ 1
Nc

XNc

k¼1

nðkÞi nðkÞj ð11Þ
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AðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
Φ′ijΦ′ij

r
=Φkk ð12Þ

where Nc is the total number of particle–particle contacts; Φ′ij
is the deviatoric part of Φij.
Evolution of contact orientation anisotropy Ac for all

three groups of specimens during shearing are shown in
Figs 11(a)–11(c), where Ac exhibits a softening type similar
to the evolution of deviatoric stress ratio in Fig. 4. Ac in
specimens Gi-LS1 is well in line with that in specimens
Gi-HM, and considerably greater than that in specimens
Gi-LS2. Moreover, evolution of branch vector anisotropy
Abv is plotted together with Ac, as shown in Figs 11(a)–11(c).
Not surprisingly, Abv significantly coincides with Ac for

specimens with spherical particles, referring to Fig. 11(a),
which is attributed to the fact that the branch vector lies
along the contact normal at a sphere–sphere contact.
However, for the other two groups of specimens, the
difference in Abv and Ac is dramatic owing to the complex
particle shapes. Furthermore, with respect to contact force
anisotropy Af as shown in Fig. 12, it appears that the contact
model does not have a significant effect on the respective
evolution for all groups of specimens.

Other general loading conditions
The above analysis is based on axisymmetric compression –

that is, σ2 = σ3 during compression. For a more
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comprehensive comparison between the HM and LS models,
two additional loading conditions, namely, axisymmetric
extension with σ2 = σ3 and true triaxial compression with a
constant intermediate principal stress ratio b0 = (σ2�σ3)/
(σ1�σ3) = 0·5, are performed on specimen group G3. As
shown in Fig. 13(a), during the extension test, contact
stiffness does not have a significant effect on q/p and εv
except at small strains. However, for the constant-b0 com-
pression test, referring to Fig. 13(b), the effect of contact
stiffness on q/p and εv is similar to that observed in the
conventional compression tests. Overall, using the LS model
can yield similar results to the HM model for these general
loading conditions.

CONCLUSIONS
Contact stiffness has a significant effect on deformation

but not on shear strength of granular assemblies, which is
associated with the corresponding microscopic responses.
However, the small-strain behaviours are significantly
affected by contact stiffness, as discussed by Yimsiri &
Soga (2000). Specimens with softer contacts show larger
mean coordination numbers but smaller mean normal
contact forces, regardless of particle shape, and thereby
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lower proportions of sliding contacts during shearing.
Moreover, the contact model does not have any considerable
effect on distributions of contact forces regardless of particle
shape. However, specimens with softer contacts show much
more uniform distributions of contact orientations and
branch vectors. Furthermore, contact stiffness distributions
within specimens using the HM model are strongly sensitive
to the stress state but not to particle shape.
A key finding is that the LS model is able to resemble the

HM model on aspects of both microscopic and macroscopic
mechanical behaviours of granular materials with spherical
and/or non-spherical particles. This finding suggests that the
LS model can be used to investigate micro-mechanical
behaviours of granular soils with complex particle shapes.
The authors note here that the computational cost can be
reduced significantly for non-spherical particles by using the
LS model, but not for spherical particles. Moreover, a
relationship between the normal and tangential contact
stiffnesses kn/r0 = ks/r0 = 1 GPa (r0 is the average radius of
particles) in the LS model is recommended to yield similar
results as using the HM model for narrowly graded quartz
sands – for example, Ottawa 20–30. Moreover, given that
dynamic interactions are based on the non-linearity of
contact stiffness (Mouraille & Luding, 2008), further
discrepancies between the HM and LS models may arise
for dynamic problems. Thus, the present results are restricted
to quasistatic situations, including general loading con-
ditions. A more comprehensive study on the criterion of
normal and tangential stiffness in the LS model is worth
conducting in further work, which would shed light on effects
of material properties, GSDs and so forth.
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APPENDIX 1. HM CONTACT STIFFNESS FOR
GENERAL ELASTIC PARTICLES

The contact profile of two contacting elastic bodies can be
approximately regarded as an ellipse with semi-axes denoted as a
and b. Contact geometry can be defined in terms of the curvature
sum ρs and curvature difference Fρ

ρs ¼ ρiI þ ρiII þ ρjI þ ρjII ð13Þ

Fρ ¼ 1
ρs
½ðρiI � ρiIIÞ2 þ ðρjI � ρjIIÞ2 þ 2 ðρiI � ρiIIÞðρjI � ρjIIÞ

� cos 2ω�1=2 ð14Þ
where ρI and ρII are the principal curvatures at contact; the
superscripts i and j denote the two contacting particles hereafter;
and ω is the angle between the directions of the maximum or
minimum principal curvatures of the two particles.

The relative curvatures A and B (with B�A) are obtained from

A ¼ ρs
4
ð1þ FρÞ; B ¼ ρs

4
ð1� FρÞ ð15Þ

Assuming a, b for convenience, two geometric parameters are
introduced

α ¼ a
b
; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p
ð16Þ

Therefore, the following is obtained

Aþ B ¼ δE′
a2K ′

ð17Þ

A
B
¼ ð1=αÞ2E′� K ′

K ′� E′
ð18Þ

where K′ and E′ are the complete elliptic integrals of the first kind
and the second kind of argument e, respectively, and their
approximate numerical solutions are given in Appendix 2.

The normal contact force Fn at a Hertz contact is given as

Fn ¼ 4π
3α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E′

ðAþ BÞK ′3

s
G*δ3=2 ð19Þ

where G* is the equivalent contact shear modulus in terms of the
particle shear modulus G and Poisson ratio ν, given by

1
G* ¼

1� νi

Gi þ 1� νj

Gj ð20Þ

Therefore, the corresponding contact normal-secant stiffness Kn
and contact normal-tangent stiffness kn are given as

Kn ¼ Fn

δ
¼ 4π

3α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E′

K ′3ðAþ BÞ

s
G*δ1=2 ð21Þ

kn ¼ dFn

dδ
¼ 2π

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E′

K ′3ðAþ BÞ

s
G*δ1=2 ð22Þ

With Mindlin’s theory (Mindlin, 1949), the no-slip solutions of
contact shear tangent stiffness in the principal direction of the
contact ellipse can be formularised as

kx ¼ 2πb μ1K ′� μ2
K ′� E′

e2

� ��1

ð23Þ

ky ¼ 2πb μ1K ′þ μ2
ð1� e2ÞK ′� E′

e2

� ��1

ð24Þ

with

μ1 ¼
1
Gi þ

1
Gj μ2 ¼

νi

Gi þ
νj

Gj ð25Þ

The key to solve equations (21)–(24) is to compute the
semi-axis ratio α, which can be numerically solved as shown in
Appendix 3.

APPENDIX 2. NUMERICAL APPROXIMATE
SOLUTIONS OF THE COMPLETE
ELLIPTIC INTEGRALS

The complete elliptic integrals of the first kind K′ and the second
kind E′ are defined as

K ′ðeÞ ¼
ðπ=2
0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2sin2ðθÞ

q ð26aÞ

E′ðeÞ ¼
ðπ=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2sin2ðθÞ

q
dθ ð26bÞ
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which can be approximately expressed as follows (Abramowitz &
Stegun, 1972)

K ′ðeÞ ¼ α1 þ α2e1 þ α3e21 � ðα4 þ α5e1 þ α6e21Þ ln ðe1Þ ð27aÞ

E′ ðeÞ ¼ β1 þ β2e1 þ β3e
2
1 � ðβ4e1 þ β5e

2
1Þ ln ðe1Þ ð27bÞ

where e1 = 1� e2, and α1…α6 and β1…β5 are fitting parameters listed
in Table 4. According to (Abramowitz & Stegun, 1972), the absolute
errors of K′ and E′ do not exceed 3� 10�5 and 4� 10�5, respectively.

APPENDIX 3. NUMERICAL APPROXIMATE
SOLUTIONS OF THE SEMI-AXIS RATIO

The semi-axis ratio α is an implicit function of the mean
curvatures of the two touching particles in equation (18), which
can be approximately represented as a function of the ratio of the
two relative curvatures β=A/B, that is

α ¼ βγ ð28Þ
where γ is a function of β (Antoine et al., 2006) defined as

γ ¼ �2ð1þ γ1xþ γ2x
2 þ γ3x

3 þ γ4x
4Þ

3ð1þ γ5xþ γ6x2 þ γ7x3 þ γ8x4Þ
ð29Þ

in which x¼ log 10
2 (β) and γ1…γ8 are fitting parameters listed in

Table 4. According to Antoine et al. (2006), the absolute error of α
does not exceed 5·86� 10�6 for 10�8� α� 108.

APPENDIX 4. PRINCIPAL CURVATURES OFA
SUPERELLIPSOID

The parametric function of a superellipsoid

Rðθ; ϕÞ ¼
Signðcos θÞrxj cos θje1 j cos ϕje2
Signðsin θÞryj sin θje1 j cos ϕje2

Signðsin ϕÞrzj sin ϕje2

2
64

3
75 ð30Þ

with θ[ [0, 2π), ϕ[ [� π/2, π/2] where rx, ry and rz are semi-lengths
along the principal directions at the body-fixed coordinate system.
The term Sign(x) is the signum function.

Therefore, the first and second derivatives are derived as the
following

Rθ ¼
�Signðcos θÞrxe1j cos θje1�2j cos ϕje2 cos θ sin θ
Signðsin θÞrye1j sin θje1�2j cos ϕje2 cos θ sin θ

0

2
64

3
75 ð31Þ

Rϕ ¼
�Signðcos θÞrxe2j cos θje1 j cos ϕje2�2 cos ϕ sin ϕ

�Signðsin θÞrye2j sin θje1 j cos ϕje2�2 cos ϕ sin ϕ

Signðsin ϕÞrze2j sin ϕje2�2 cos ϕ sin ϕ

2
664

3
775 ð32Þ

Rθϕ ¼ cos θ sin θ cos ϕ sin ϕ

�
Signðcos θÞrxe1e2j cos θje1�2j cos ϕje2�2

�Signðsin θÞrye1e2j sin θje1�2j cos ϕje2�2

0

2
64

3
75 ð33Þ

Rθθ ¼
Signðcos θÞrxe1j cos θje1�2j cos ϕje2 ðe1sin2θ � 1Þ
Signðsin θÞrye1j sin θje1�2j cos ϕje2 ðe1cos2θ � 1Þ

0

2
64

3
75 ð34Þ

Rϕϕ ¼
Signðcos θÞrxe2j cos θje1 j cos ϕje2�2ðe2sin2ϕ� 1Þ
Signðsin θÞrye2j sin θje1 j cos ϕje2�2ðe2sin2ϕ� 1Þ

SignðsinϕÞrze2j sin ϕje2�2ðe2cos2ϕ� 1Þ

2
664

3
775 ð35Þ

The unit normal vector of the surface is

n ¼ Rθ � Rϕ

jRθ � Rϕj ð36Þ

where ‘�’denotes avector cross product, and ‘| |’ is for avector norm.
The first fundamental form coefficients

E1 ¼ Rθ 	 Rθ F1 ¼ Rθ 	 Rϕ G1 ¼ Rϕ 	 Rϕ ð37Þ
where ‘ · ’ is for a vector dot product.

The second fundamental form coefficients

L1 ¼ Rθθ 	 n M1 ¼ Rθϕ 	 n ¼ 0 N1 ¼ Rϕϕ 	 n ð38Þ
Gaussian curvature

P ¼ L1N1

E1G1 � F 2
1

ð39Þ

Mean curvature

Q ¼ E1N1 þ G1L1

2ðE1G1 � F2
1 Þ

ð40Þ

The principal curvatures

ρI ¼ Qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � P

p
ρII ¼ Q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � P

p
ð41Þ

NOTATION
A, B relative curvatures
Abv anisotropy of branch vectors
Ac anisotropy of contact normal (orientations)
Af anisotropy of contact forces

a, b, α, e geometric parameters of a contact ellipse
b0 intermediate principal stress ratio

E1, F1, G1 first fundamental form coefficients
Ec Young’s modulus of particle
ei local void ratio

el, ems local void ratio and its solid weighted mean
Fn normal contact force
Fs shear contact force at the current time step
F ′s shear contact force at the previous time step
f c contact force at the contact c
fn normal contact force within a specimen

hfni mean normal contact force
G* equivalent contact shear modulus
Gi shear modulus of particle i
H height of specimen during shearing
H0 initial height of specimen before shearing
h successive values of the specimen height as it

changes
K′, E′ complete elliptic integrals

Kn normal-secant stiffness
kn normal-tangent stiffness
ks shear-tangent stiffness

kx, ky principal contact shear-tangent stiffness
L1, M1, N1 second fundamental form coefficients

lc branch vector joining the centres of the two
contacting particles at contact c

m minus mean of natural logarithm of el
Nc total number of inter-particle contacts
Np total number of particles or Voronoi cells
n vectorial measure

Table 4. Fitting parameters for equations (27) and (29)

α1 1·3862944 β1 1·0 γ1 0·40227436
α2 0·1119723 β2 0·4630151 γ2 3·7491752� 10�2

α3 0·0725296 β3 0·1077812 γ3 7·4855761� 10�4

α4 0·5 β4 0·2452727 γ4 2·1667028� 10�6

α5 0·1213478 β5 0·0412496 γ5 0·42678878
α6 0·0288729 γ6 4·2605401� 10�2

γ7 9·0786922� 10�4

γ8 2·7868927� 10�6
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P Gaussian curvature
p mean stress
Q mean curvature
q deviatoric stress
R radius of spherical particle

R(θ, ϕ) parametric function of a superellipsoid
Rθ, Rϕ first derivatives of R(θ, ϕ)

Rθϕ, Rθθ, Rϕϕ second derivatives of R(θ, ϕ)
r, r0 particle equivalent radius and its average

rx, ry, rz semi-axis length of a superellipsoid
s standard deviation of natural logarithm of el
V volume of specimen during shearing

Vsi particle volume within Voronoi cell i
Vvi void volume within Voronoi cell i
V0 initial volume of specimen before shearing
v successive values of the specimen volume as

it changes
Z mean coordination number

α1, β1 fitting parameters in equation (10)
Δu incremental shear displacement
δ contact penetration depth

ε, η shape parameters of a superellipsoid
εv volumetric strain of a specimen

εx, εy, εz strains in x, y and z axes of a specimen
ε1, ε2 shape parameters of a superellipsoid

ζs proportion of sliding contacts
ζw proportion of weak contacts
μp inter-particle coefficient of friction

μ1, μ2 parameters in equation (25)
νi Poisson ratio of particle i

ρI, ρII principal curvatures
σij stress tensor within a specimen

ρs, Fρ curvature sum and curvature difference
σ′ij deviatoric part of a stress tensor
Φij fabric tensor of a vectorial measure
Φ′ij deviatoric part of a fabric tensor
ω principal curvature angle
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